organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

The highly saddled octaethyltetraphenylporphyrin-[H₄OETPP] dichloride toluene 1.33-solvate

Chuanjiang Hu, Bruce C. Noll and W. Robert Scheidt*

Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556-5670, USA Correspondence e-mail: scheidt.1@nd.edu

Received 19 May 2007; accepted 1 June 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.046; wR factor = 0.139; data-to-parameter ratio = 16.3.

The title compound, 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20tetraphenylporphyrin dichloride toluene 1.33-solvate, $C_{60}H_{64}N_4^{2+} \cdot 2Cl^- \cdot 1.33C_7H_8$, displays a highly S_4 -saddled porphyrin core with the C β atoms displaced 1.23 (9) Å out of the N₄ plane. All N atoms are protonated and form hydrogen bonds $[N \cdot \cdot \cdot Cl = 3.206 (1) \text{ Å}]$ with chloride anions. An S_4 symmetry axis passes through the porphyrin center. The phenyl group of the porphyrin is disordered over two sites, with occupancies approximately 0.6:0.4.

Related literature

For related literature, see: Adler et al. (1970); Barkigia et al. (1988, 1995); Regev et al. (1994); Senge (1992); Senge & Kalisch (1999); Senge et al. (1994).

Experimental

Crystal data

 $C_{60}H_{64}N_4^{2+} \cdot 2Cl^- \cdot 1.33C_7H_8$ $M_r = 1034.90$ Cubic, I43d a = 25.8135 (2) Å V = 17200.5 (2) Å³

Data collection

```
Bruker APEX II CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2004)
  T_{\min} = 0.936, T_{\max} = 0.955
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.139$	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.15	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$
4414 reflections	Absolute structure: Flack (1983),
271 parameters	2073 Friedel pairs
42 restraints	Flack parameter: -0.07 (7)

Z = 12

Mo $K\alpha$ radiation

 $0.42 \times 0.32 \times 0.29 \text{ mm}$

176336 measured reflections

4414 independent reflections

3859 reflections with $I > 2\sigma(I)$

 $\mu = 0.16 \text{ mm}^-$

T = 100 (2) K

 $R_{\rm int} = 0.040$

Data collection: APEX2 (Bruker-Nonius, 2004); cell refinement: APEX2 and SAINT (Bruker-Nonius, 2004); data reduction: SAINT and XPREP (Sheldrick, 2005); program(s) used to solve structure: XS (Sheldrick, 2001); program(s) used to refine structure: XL (Sheldrick, 2001); molecular graphics: XP (Sheldrick, 1998) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

We thank the US National Institutes of Health for support of our research under grant GM-38401.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2027).

References

- Adler, A. D., Longo, F. R., Kampus, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443-2445.
- Barkigia, K. M., Chantranupong, L., Smith, K. M. & Fajer, J. (1988). J. Am. Chem. Soc. 110, 7566-7567.
- Barkigia, K. M., Fajer, J., Berber, M. D. & Smith, K. M. (1995). Acta Cryst. C51, 511-515.
- Bruker-Nonius (2004). APEX2 and SAINT. Bruker-Nonius BV, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Regev, A., Galili, T., Medforth, C. J., Smith, K. M., Barkigia, K. M., Fajer, J. & Levanon, H. (1994). J. Phys. Chem. 98, 2520-2526.
- Senge, M. O. (1992). J. Photochem. Photobiol. B, 16, 3-36.
- Senge, M. O., Forsyth, T. P., Nguyen, L. T. & Smith, K. M. (1994). Angew. Chem. Int. Ed. Engl 33, 2485-2487.
- Senge, M. O. & Kalisch, W. W. (1999). Z. Naturforsch. Teil B, 54, 943-959.
- Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2001). XL and XS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2005). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o3128 [doi:10.1107/S1600536807027018]

The highly saddled octaethyltetraphenylporphyrin-[H4OETPP] dichloride toluene 1.33-solvate

C. Hu, B. C. Noll and W. R. Scheidt

Comment

Different macrocycle conformations are believed to play an important role in a variety of protein complexes. (Senge 1992; Barkigia *et al.* 1988) Porphyrins bearing large and sterically interacting substituents at the porphyrin periphery have been synthesized successfully to yield tetrapyrroles with significantly distorted macrocycles. For one such porphyrin, octaethyltetraphenylporphyrin (OETPP), its free base and diacid salts have been reported (Regev *et al.* 1994; Barkigia *et al.* 1995; Senge *et al.* 1994; Senge & Kalisch, 1999). We report herein the molecular structure of another diacid salt of OETPP as a different solvate, $[H_4OETPP] \cdot 2 C l \cdot (C_7H_8)_{1.33}$.

Figure 1 shows the thermal-ellipsoid plot of the cation, H_4OETPP^{2+} . This porphyrin has an S₄ symmetry axis through the porphyrin center. The asymmetric unit is one-fourth porphyrin. The neighboring pyrrole units are displaced pairwise above and below the mean plane. One of the most important features is the severe saddling of the porphyrin core. The displacements of the porphyrin core are also shown in Figure 1. The average displacement of the β -carbons from the four nitrogen mean plane is 1.23 (9) Å, which is similar to those in other diacid salts of OETPP (Barkigia *et al.* 1995; Senge *et al.* 1994; Senge & Kalisch, 1999). Saddling is also shown by the tilt of pyrrole rings away from porphyrin mean plane. In the title compound, the average of the dihedral angle between pyrrole and porphyrin mean plane is 38.25 (4)°.

The four pyrrole N atoms are protonated, they show alternating up- and down- displacements. As shown in Figure 2, two chloride anions are held at both sides of the porphyrin plane by hydrogen-bonds to pyrrole nitrogen. The Cl…N distance is 3.206 (1) Å, which is comparable with 3.15 and 3.23 Å in [H₄OETPP]·2 C l·CH₂Cl₂ (Senge & Kalisch, 1999).

Experimental

During the metallation of H₂OETPP (Adler *et al.* 1970), the reaction solution was washed by 2 mol/L HCl solution. The resulting material was crystallized in toluene, which yielded [H₄OETPP]·2 C l crystals as an impurity.

Refinement

The structures were solved by direct methods using XS (Sheldrick, 2001) and refined against F^2 using XL (Sheldrick, 2001); subsequent difference Fourier syntheses led to the location of all the remaining non-hydrogen atoms. For the structure refinement all data were used, including negative intensities. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were idealized with the standard *SHELXTL* idealization methods. The program *SADABS* was applied for the absorption correction. The phenyl group of the porphyrin molecule is disordered over two positions. The final refinement gave the occupancy for the major component as 0.58 (4). The toluene solvate is disordered around a threefold axis, its occupancy is fixed as 0.33333 and the phenyl ring was refined as a rigid group. Anisotropic displacement parameters for atoms of these groups were refined by similar U^{ij} restraints (SIMU). Rounding errors create differences between reported formula and that calculated by checkCIF.

Figures

Fig. 1. The molecular structure showing 50% probability displacement ellipsoids. Only the major component of the phenyl group is displayed. The displacements of the atoms of the porphyrin core from the mean plane defined by the four nitrogen porphyrin atoms are also given in 0.01 Å.

Fig. 2. Crystal structure of the title compound with hydrogen bonds as shown in dashed lines.

2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin dichloride toluene 1.33-solvate

Crystal data	
$C_{60}H_{64}N_4^{2+}\cdot 2Cl^-\cdot 1.33C_7H_8$	Z = 12
$M_r = 1034.90$	$F_{000} = 6632$
Cubic, <i>I</i> 43 <i>d</i>	$D_{\rm x} = 1.199 {\rm ~Mg~m}^{-3}$
Hall symbol: I -4bd 2c 3	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 25.8135 (2) Å	Cell parameters from 9107 reflections
<i>b</i> = 25.8135 (2) Å	$\theta = 2.2 - 27.0^{\circ}$
c = 25.8135 (2) Å	$\mu = 0.16 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 100 (2) K
$\beta = 90^{\circ}$	Block, red
$\gamma = 90^{\circ}$	$0.42 \times 0.32 \times 0.29 \text{ mm}$
V = 17200.5 (2) Å ³	

Data collection

Bruker APEX II CCD area-detector diffractometer	4414 independent reflections
Radiation source: fine-focus sealed tube	3859 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.040$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 30.6^{\circ}$
T = 100(2) K	$\theta_{\min} = 1.9^{\circ}$
φ and ω scans	$h = -36 \rightarrow 36$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$k = -36 \rightarrow 36$
$T_{\min} = 0.936, T_{\max} = 0.955$	<i>l</i> = −36→29
176336 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.0734P)^2 + 9.3007P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.139$	$(\Delta/\sigma)_{\rm max} = 0.003$
<i>S</i> = 1.15	$\Delta \rho_{max} = 0.42 \text{ e } \text{\AA}^{-3}$
4414 reflections	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
271 parameters	Extinction correction: none
42 restraints	Absolute structure: Flack (1983), 2073 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.07 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cl1	0.5000	0.2500	0.02930 (2)	0.03694 (15)	
N1	0.53228 (5)	0.32591 (5)	0.12214 (5)	0.0251 (2)	
H1A	0.5196	0.3011	0.1025	0.030*	
C1	0.50375 (6)	0.36471 (6)	0.14469 (6)	0.0249 (3)	
C2	0.53873 (6)	0.39489 (6)	0.17608 (6)	0.0270 (3)	
C3	0.58772 (6)	0.37522 (6)	0.16901 (6)	0.0274 (3)	
C4	0.58334 (6)	0.33159 (6)	0.13465 (6)	0.0256 (3)	
C5	0.52423 (8)	0.43372 (7)	0.21691 (7)	0.0337 (3)	
H5A	0.5000	0.4594	0.2019	0.040*	
H5B	0.5557	0.4524	0.2284	0.040*	
C6	0.49915 (12)	0.40811 (10)	0.26289 (9)	0.0524 (6)	
H6A	0.4912	0.4343	0.2892	0.079*	
H6B	0.5228	0.3823	0.2775	0.079*	
H6C	0.4670	0.3911	0.2519	0.079*	
C7	0.63502 (7)	0.39025 (8)	0.19900 (8)	0.0370 (4)	
H7A	0.6305	0.4258	0.2128	0.044*	

H7B	0.6654	0.3904	0.175	55	0.044*	
C8	0.64522 (10)	0.35331 (1	1) 0.243	360 (10)	0.0535 (6)	
H8A	0.6745	0.3661	0.264	12	0.080*	
H8B	0.6534	0.3189	0.229	99	0.080*	
H8C	0.6143	0.3511	0.265	56	0.080*	
С9	0.62278 (6)	0.29898 (6	0.116	515 (6)	0.0274 (3)	
C10A	0.6751 (4)	0.3241 (7)	0.105	54 (7)	0.026 (2)	0.58 (4)
C11A	0.7208 (5)	0.3005 (5)	0.124	4 (5)	0.0376 (17)	0.58 (4)
H11A	0.7192	0.2695	0.144	13	0.045*	0.58 (4)
C12A	0.7684 (4)	0.3239 (6)	0.113	33 (4)	0.048 (3)	0.58 (4)
H12A	0.7994	0.3093	0.126	59	0.057*	0.58 (4)
C13A	0.7710 (4)	0.3681 (6)	0.082	27 (5)	0.052 (2)	0.58 (4)
H13A	0.8036	0.3831	0.074	17	0.062*	0.58 (4)
C14A	0.7261 (5)	0.3903 (4)	0.064	40 (4)	0.0441 (18)	0.58 (4)
H14A	0.7281	0.4205	0.043	81	0.053*	0.58 (4)
C15A	0.6778 (6)	0.3686 (6)	0.075	54 (5)	0.0331 (18)	0.58 (4)
H15A	0.6470	0.3843	0.062	28	0.040*	0.58 (4)
C10B	0.6743 (7)	0.3166 (10	0.112	26 (10)	0.039 (5)	0.42 (4)
C11B	0.7144 (7)	0.2923 (9)	0.136	56 (9)	0.050 (3)	0.42 (4)
H11B	0.7078	0.2648	0.160)1	0.060*	0.42 (4)
C12B	0.7645 (7)	0.3075 (9)	0.126	58 (11)	0.060 (4)	0.42 (4)
H12B	0 7918	0 2880	0.141	9	0.072*	0.42 (4)
C13B	0 7765 (5)	0 3469 (12	0.098	31 (10)	0.072	0.42(4)
H13B	0.8118	0 3558	0.092	25	0.081*	0.42(4)
C14B	0.7372 (9)	0.3762 (11	0.075	57 (7)	0.066 (5)	0.42 (4)
H14B	0.7447	0.4064	0.056	51	0.079*	0.42 (4)
C15B	0 6847 (9)	0 3592 (10	0.083	33 (9)	0 046 (4)	0.42 (4)
H15B	0.6571	0.3779	0.067	78	0.055*	0.42 (4)
C21	0.6692 (6)	0.1960 (7)	0.284	40 (5)	0.080 (4)	0.33
C22	0.6698 (7)	0.2339 (6)	0.320)6 (6)	0.092 (4)	0.33
H22A	0.6514	0.2649	0.313	32	0.111*	0.33
C23	0.6957 (6)	0.2311 (6)	0.368	37 (5)	0.080 (3)	0.33
H23A	0.6928	0.2582	0.393	35	0.096*	0.33
C24	0.7247 (5)	0.1886 (6)	0.378	32 (5)	0.089 (3)	0.33
H24A	0.7439	0.1857	0.409	95	0.107*	0.33
C25	0.7261 (6)	0.1458 (7)	0.338	33 (6)	0.094 (4)	0.33
H25A	0.7455	0.1151	0.344	13	0.113*	0.33
C26	0.6988 (7)	0.1521 (6)	0.293	35 (5)	0.079 (3)	0.33
H26A	0.7002	0.1257	0.267	79	0.095*	0.33
C27	0.6384 (7)	0.1992 (6)	0.234	15 (6)	0.111 (6)	0.33
H27A	0.6200	0.1665	0.228	39	0.166*	0.33
H27B	0.6619	0.2058	0.205	54	0.166*	0.33
H27C	0.6133	0.2276	0.237	71	0.166*	0.33
				-		
Atomic displa	cement parameters	$(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0396 (3)	0.0432 (3)	0.0280 (3)	-0.0041 (3)	0.000	0.000

N1	0.0245 (6)	0.0252 (6)	0.0257 (6)	-0.0014 (5)	-0.0018 (5)	-0.0030 (5)
C1	0.0275 (7)	0.0229 (6)	0.0242 (6)	0.0000 (5)	-0.0019 (5)	-0.0001 (5)
C2	0.0319 (7)	0.0240 (7)	0.0250 (7)	-0.0005 (6)	-0.0039 (5)	-0.0011 (5)
C3	0.0295 (7)	0.0265 (7)	0.0263 (7)	-0.0026 (6)	-0.0029 (6)	-0.0039 (6)
C4	0.0252 (7)	0.0257 (7)	0.0260 (7)	-0.0037 (5)	-0.0014 (5)	-0.0015 (6)
C5	0.0365 (8)	0.0303 (8)	0.0343 (8)	0.0060 (6)	-0.0060 (7)	-0.0076 (6)
C6	0.0664 (14)	0.0536 (12)	0.0371 (10)	0.0086 (11)	0.0127 (10)	-0.0089 (9)
C7	0.0304 (8)	0.0403 (9)	0.0402 (9)	-0.0037 (7)	-0.0043 (7)	-0.0164 (8)
C8	0.0437 (11)	0.0739 (15)	0.0429 (11)	0.0034 (11)	-0.0187 (9)	-0.0073 (11)
C9	0.0253 (7)	0.0291 (7)	0.0279 (7)	-0.0028 (6)	-0.0018 (6)	-0.0040 (5)
C10A	0.017 (3)	0.029 (5)	0.033 (3)	-0.006 (2)	0.0045 (16)	-0.006(3)
C11A	0.025 (3)	0.045 (3)	0.043 (4)	-0.003 (2)	0.005 (2)	-0.019 (3)
C12A	0.021 (3)	0.064 (8)	0.058 (5)	-0.018 (4)	0.010 (3)	-0.027 (5)
C13A	0.036 (3)	0.067 (5)	0.052 (4)	-0.028 (3)	0.021 (3)	-0.031 (3)
C14A	0.051 (4)	0.049 (3)	0.033 (3)	-0.025 (3)	0.014 (3)	-0.014 (2)
C15A	0.040 (4)	0.030 (3)	0.030 (3)	-0.011 (3)	0.013 (3)	-0.001 (2)
C10B	0.048 (6)	0.027 (6)	0.041 (8)	-0.013 (3)	0.009 (3)	-0.012 (6)
C11B	0.022 (4)	0.074 (9)	0.055 (8)	-0.002 (4)	-0.003 (5)	-0.033 (6)
C12B	0.030 (4)	0.063 (8)	0.086 (11)	-0.013 (5)	0.004 (5)	-0.036(7)
C13B	0.031 (4)	0.097 (16)	0.073 (12)	-0.033 (8)	0.018 (6)	-0.049 (11)
C14B	0.069 (11)	0.089 (11)	0.041 (6)	-0.049 (9)	0.022 (6)	-0.022 (6)
C15B	0.039 (4)	0.049 (10)	0.049 (8)	-0.009 (5)	0.006 (5)	-0.011 (6)
C21	0.085 (8)	0.108 (10)	0.048 (5)	0.047 (8)	-0.011 (5)	-0.018 (5)
C22	0.115 (11)	0.102 (10)	0.060(7)	0.023 (9)	-0.013 (7)	-0.004 (7)
C23	0.080 (8)	0.088 (8)	0.072 (7)	0.031 (6)	-0.014 (5)	-0.019 (6)
C24	0.088 (7)	0.108 (9)	0.071 (6)	0.012 (7)	0.007 (6)	0.025 (6)
C25	0.113 (10)	0.089 (9)	0.081 (8)	-0.029 (8)	-0.041 (7)	0.026 (7)
C26	0.098 (9)	0.075 (7)	0.065 (6)	-0.018 (7)	-0.037 (6)	-0.004 (5)
C27	0.165 (16)	0.101 (10)	0.067 (7)	0.043 (10)	-0.017 (9)	-0.016 (7)

Geometric parameters (Å, °)

	00
N1—C1 1.3729 (19) C13A—H13A 0.95	00
N1—H1A 0.8800 C14A—C15A 1.39	8 (19)
C1—C9 ⁱ 1.405 (2) C14A—H14A 0.95	00
C1—C2 1.442 (2) C15A—H15A 0.95	00
C2—C3 1.375 (2) C10B—C15B 1.36	(3)
C2—C5 1.502 (2) C10B—C11B 1.36	(3)
C3—C4 1.438 (2) C11B—C12B 1.37	4 (18)
C3—C7 1.497 (2) C11B—H11B 0.95	00
C4—C9 1.405 (2) C12B—C13B 1.29	6 (18)
C5—C6 1.505 (3) C12B—H12B 0.95	00
C5—H5A 0.9900 C13B—C14B 1.39	(2)
C5—H5B 0.9900 C13B—H13B 0.95	00
C6—H6A 0.9800 C14B—C15B 1.44	(3)
C6—H6B 0.9800 C14B—H14B 0.95	00
C6—H6C 0.9800 C15B—H15B 0.95	00
C7—C8 1.518 (3) C21—C22 1.36	0 (19)

С7—Н7А	0 9900	C21—C26	1 39 (2)
C7—H7B	0.9900	C21—C27	1.59(-)
C8—H8A	0.9800	C^{22} C^{23}	1 411 (19)
C8—H8B	0.9800	C22—H22A	0.9500
C8—H8C	0.9800	C23—C24	1.352 (18)
$C9-C1^{ii}$	1 405 (2)	C23—H23A	0.9500
C_{P}	1.105(2)	C_{24} C_{25}	1 51 (3)
C_{2} C_{10A}	1.41(2) 1.524(13)	$C_{24} = C_{23}$	0.9500
C_{10A} C_{15A}	1.324(13) 1 30(2)	C_{24} C_{25} C_{26}	1.365(17)
C10A = C11A	1.39(2) 1.42(2)	C25_H25A	0.9500
$C_{11A} = C_{12A}$	1.42(2) 1 308(12)	C26 H26A	0.9500
C11A H11A	0.9500	C27 H27A	0.9300
	1 200 (10)	C27—H27A	0.9800
C12A - C13A	0.0500	$C_2 / - H_2 / B$	0.9800
	0.9300		0.9800
C4—NI—CI	109.84 (13)	CI0A—CIIA—HIIA	120.8
C4—N1—H1A	125.1	C13A—C12A—C11A	120.9 (10)
C1—N1—H1A	125.1	C13A—C12A—H12A	119.5
$N1-C1-C9^{i}$	122.92 (14)	C11A—C12A—H12A	119.5
N1—C1—C2	107.24 (13)	C14A—C13A—C12A	120.0 (7)
C9 ⁱ —C1—C2	129.69 (14)	C14A—C13A—H13A	120.0
C3—C2—C1	107.58 (14)	C12A—C13A—H13A	120.0
C3—C2—C5	124.67 (15)	C13A—C14A—C15A	120.6 (8)
C1—C2—C5	126.78 (15)	C13A—C14A—H14A	119.7
C2—C3—C4	107.39 (14)	C15A—C14A—H14A	119.7
C2—C3—C7	125.87 (15)	C10A—C15A—C14A	119.6 (10)
C4—C3—C7	125.88 (15)	C10A—C15A—H15A	120.2
N1—C4—C9	123.72 (14)	C14A—C15A—H15A	120.2
N1—C4—C3	107.82 (13)	C15B—C10B—C11B	118.4 (19)
C9—C4—C3	128.46 (14)	C15B—C10B—C9	119.0 (19)
C2—C5—C6	111.57 (16)	C11B—C10B—C9	123 (2)
С2—С5—Н5А	109.3	C10B—C11B—C12B	120.0 (18)
С6—С5—Н5А	109.3	C10B—C11B—H11B	120.0
С2—С5—Н5В	109.3	C12B—C11B—H11B	120.0
С6—С5—Н5В	109.3	C13B—C12B—C11B	124 (2)
H5A—C5—H5B	108.0	C13B—C12B—H12B	118.2
С5—С6—Н6А	109.5	C11B—C12B—H12B	118.2
С5—С6—Н6В	109.5	C12B—C13B—C14B	119.3 (15)
H6A—C6—H6B	109.5	C12B—C13B—H13B	120.4
С5—С6—Н6С	109.5	C14B—C13B—H13B	120.4
Н6А—С6—Н6С	109.5	C13B—C14B—C15B	117.7 (12)
H6B—C6—H6C	109.5	C13B—C14B—H14B	121.2
C3—C7—C8	111.77 (17)	C15B—C14B—H14B	121.2
С3—С7—Н7А	109.3	C10B—C15B—C14B	120.6 (16)
С8—С7—Н7А	109.3	C10B—C15B—H15B	119.7
С3—С7—Н7В	109.3	C14B—C15B—H15B	119.7
С8—С7—Н7В	109.3	C22—C21—C26	117.3 (11)
H7A—C7—H7B	107.9	C22—C21—C27	123.7 (16)
С7—С8—Н8А	109.5	C26—C21—C27	119.0 (16)

С7—С8—Н8В	109.5	C21—C22—C23	125.4 (16)	
H8A—C8—H8B	109.5	C21—C22—H22A	117.3	
С7—С8—Н8С	109.5	C23—C22—H22A	117.3	
H8A—C8—H8C	109.5	C24—C23—C22	117.6 (13)	
H8B—C8—H8C	109.5	C24—C23—H23A	121.2	
C4—C9—C1 ⁱⁱ	122.72 (14)	C22—C23—H23A	121.2	
C4—C9—C10B	120.9 (9)	C23—C24—C25	118.9 (13)	
C1 ⁱⁱ —C9—C10B	116.1 (10)	C23—C24—H24A	120.5	
C4—C9—C10A	116.8 (6)	C25—C24—H24A	120.5	
C1 ⁱⁱ —C9—C10A	120.4 (6)	C26—C25—C24	118.6 (16)	
C15A—C10A—C11A	120.6 (11)	C26—C25—H25A	120.7	
C15A—C10A—C9	119.8 (10)	С24—С25—Н25А	120.7	
C11A—C10A—C9	119.6 (13)	C25—C26—C21	122.0 (16)	
C12A—C11A—C10A	118.4 (11)	С25—С26—Н26А	119.0	
C12A—C11A—H11A	120.8	C21—C26—H26A	119.0	
Symmetry codes: (i) $-y+3/4$, $x-1/4$, $-z+1/4$; (ii) $y+1/4$, $-x+3/4$, $-z+1/4$.				

